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It is widely accepted that the pressure variation of interstitial fluid is one of the most
important factors in bone physiology. In order to understand the role of interstitial fluid on
porous bony structure, a consideration for the biomechanical interactions between fluid and
solid constituents within bone is required. In this study, a poroelastic theory was applied to
investigate the elastic behavior of calf vertebral trabecular bone composed of the porous solid
trabeculae and the viscous bone marrow. The poroelastic behavior of trabecular bone in a
uniaxial stress condition was simulated using a commercial finite difference analysis software
(FLAC, Itasca Consulting Group, USA), and tested for 5 different strain rates, i. e., 0.001, O.
01, 0.1, and 10 per second. The material properties of the calf vertebral trabecular bone were
utilized from the previous experimental study. Two asymptotic poroelastic responses, the
drained and undrained deformations, were predicted. From the predicted results for the simulat
ed five strain rates, it was found that the pore pressure generation has a linearly increasing
behavior when the strain rate is the highest at 10 per second, otherwise it showed a nonlinear
behavior. The pore pressure generation with respect to the strain was found to be increased as
the strain rate increased. The elastic moduli predicted at each strain were 208.3, 212.2, 337.6, 593.
1, and 602.2 MPa, respectively. Based on the results of the present study, it was suggested that
the calf vertebral trabecular bone could be modeled as a poroelastic material and its strain rate
dependent material behavior could be predicted.

Key Words: Biomechanics, Trabecular Bone Mechanics, Theory of Poroelasticity, Strain Rate
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1. Introduction

Trabecular bone shows a porous structure com
posed of solid trabeculae and viscous intraos
seous fluid. Trabecular bone occupies the prox
imal and distal parts of long bone and the inner
most parts of spine, pelvis, and skull, to provide
mechanical and physiological functions for main-
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ly load bearing, impact energy absorption, and
erthropoiesis. It shows high porosity (more than
85 %) compared to other biological hard tissues
such as cortical bone having less than 10 % of
porosity (Cowin, 1999). The pore space of
trabecular bone is continuous to allow interstitial
fluid flow (Hughes et al., 1978) and filled with a
highly viscous biological fluid, mainly bone
marrow which the viscosity is 67 times of water
viscosity at 37·C (Bryant, 1988). Therefore,
trabecular bone can be defined as a highly porous
structure filled with a highly viscous interstitial
fluid. It is understood that observed time-depen
dent behavior of trabecular bone such as stress
relaxation and creep (Ducheyne et al., 1977;
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Schoenfeld et al., 1974), influence of strain and
loading rate input on mechanical properties
(Carter and Hayes, 1977; Linde et aI., 1991; Luo
et al., 1993), and phase shift phenomena under
dynamic loading (Tateishi, 1979), are caused by
the interstitial bone fluid. To explain the time
dependent behavior of trabecular bone, therefore,
mechanical roles of interstitial fluid occupying
more than 85 % of the volume of trabecular bone
should be included in analyses.

Since the late 1960's, the poroelasticity that
accounts for coupled interaction between porous
solid and viscous pore fluid has been used to
investigate the time-dependent behavior of cor
tical bone. The creep and stress relaxation of
cortical bone were predicted under a sudden
application of load (Nowinski and Davis, 1969
and 1970; Nowinski, 1971 and 1972; Simon et aI.,
1985). The influence of the intraosseous bound
ary and loading conditions on the mechanical
behavior of cortical bone were investigated at
various loading conditions (Zhang and Cowin,
1994). The poroelasticity has been applied to
understand the role of the intraosseous fluid in
remodeling process of cortical bone (Arramon
and Cowin, 1994; Harrigan and Hamilton, 1993;
Johnson, 1982; Johnson et aI., 1984;Weinbaum et
aI., 1994). These studies showed that the poroelas
ticity could be used to describe the time-depen
dent behavior of cortical bone. Recently, the
application of poroelasticity to bone mechanics
becomes important issue since the knowledge
about the biomechanical interaction, particularly
pore pressure generation, between the mineralized
bone matrix and viscous intraosseous fluid is
essential to understand the bone physiology con
cerning bone mineralization, osteocyte nutrition,
and detailed bone remodeling process.

For trabecular bone, however, a few studies
were performed using the theory of poroelasticity
(Simon et aI., 1985; Hong and Lim, 1998; Lim
and Hong, 2000) although more significant time
dependent behaviors than cortical bone were
observed in the previous experimental studies
(Carter and Hayes, 1977; Ducheyne et aI., 1977;
Linde et al., 1991; Luo et al., 1993; Schoenfeld et
aI., 1974; Tateishi, 1979). A simple one-dirnen-

sional poroelastic modeling was performed and
solved mathematically using assumed and esti
mated poroelastic properties to describe its time
dependent behavior (Hong and Lim, 1998). The
results showed significant pore pressure effects by
mechanical interaction between solid and fluid
phases on the mechanical behavior of trabecular
bone, although it was restrictive to the confined
condition. The poroelastic properties based on
the poroelastic formulations of Rice and Clearly
(1976) were directly measured for the bovine
vertebral trabecular bone (Lim and Hong, 2000).
This study indicated that the pore pressure gener
ation coefficient called Skempton's coefficient of
trabecular bone is much higher than that of cor
tical bone (Lim and Hong, 2000; Cowin, 1999).
Thus, the poroelastic effect of trabecular bone on
its apparent mechanical behavior would be
greater than that of cortical bone. However, no
investigation is performed for the poroelastic
behavior of trabecular bone using the experimen
tally measured poroelastic properties.

In this study, the porous elastic theory (Rice
and Clearly, 1976) was applied to the bovine
trabecular bone to investigate the effect of fluid
phase on its apparent strain rate dependent behav
ior in an unconfined condition. For the study, the
previously measured poroelastic properties of the
bovine trabecular bone (Lim and Hong, 2000)
were used. Since the theory covers elasticity of
porous materials, the analysis was limited within
the elastic range of the bovine trabecular bone. A
possible viscoelastic effect of the trabecular
matrix was neglected. The poroelastic behavior in
a uniaxial stress condition was simulated by using
an explicit finite difference analysis code for
various strain rate inputs.

2. Porous Elastic Modeling in
Uniaxial Stress Condition

A two-dimensional axisymmetric porous elas
tic model in the uniaxial stress condition was
developed to investigate the pore pressure genera
tion effect on enhancement of stiffness of the calf
vertebral trabecular bone for various strain rates,
0.001,0.01,0.1, I, and lO/sec. Figure I illustrates
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The diffusion equation is:

where G=shear modulus; v=Poisson 's ratio; v «

=undrained Po isson 's ratio ; B=Skempton's co
efficient; and K= permeability coefficient. In itial
and bou ndary conditions were: I) no initia l pore

pressure and stress (p( x , y, 0) =0 and 6xx(X, y ,

0) = 6y'y(X, y, 0) = 6zz (x, y, 0) = O"xy(x , y, 0) =0);
2) pore pressure is always zero at the radial
boundary (p(D/2, y, t) =0) where D is the
diameter of the specimen; 3) due to symmetry, no
longitudinal fluid flow at the middle (y=O) and
at the end of the specimen (y = L /2) , and no
rad ial fluid flow at the center (x =0) , i. e.,

8p(0, y , t) = 8p(x , 0, t) = 8p(0, L/2, t) = 0
8x 8y 8y

where L is the specimen length; 4) no longitud i
nal and rad ial displacement at the middle and
center of the specimen, respectively, i. e., CXX (0, y,

t) =cY.Y (x , 0, t) = 0; and 5) due to friction
between the specimen and loading platens, a
radial fixed boundary condition is assumed cxx
(x, L /2 , t) =0) . The deta iled poroelastic for mu
lations and mean ings of parameters were de
scribed in the Appendix.

To obtain response, an explicit fin ite difference
model was implemented usin g FLAC (Itasca
Consulting Group, Minneapolis, MN , USA ). The
porous elastic parameters (Table l) from liter a
ture (Lim and Hong, 2000) were used for the
analysis. For the model predictions, the stress and
pore pressure from each finite difference grid of
the model were summed and then averaged at
each time step. Since this study was limited with in
the elastic range of trabe cular bone, an axia l
strai n of 0.6 % (Keaveny et aI., 1994) was applied
to the analyses.
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Fig. 1 Two-dimensional finite difference porous
elastic model of the cylindrical trabecular
bone specimen

the porou s elastic model and boundary condition
of a cylindrical trabecu lar bone samp le ( l0 mm in
diameter and 20 mm in length ) .

Th e stress- strain relationships in this configu
ration are (Rice and Clearly, 1976) :

Table 1 Porous elastic parameters of the bovine vertebral trabecular bone used in this study (Lim and Hong,
1999)

Parameter G v vu B K

90.85 16.3
0.242 0.399 0.85l

Value (± 59.59) (± 8.02) X 10-8

MPa
(±0.099) (±0.083) (±O.l44)

m2jPa.sec



Strain Rate Dependent Poroelastic Behavior of Bovine Vertebral Trabecular Bone 1035

4.0 ~--------------, 2.0 ,--------------,

::::: ~t~~1~ ~~1: : ~%:~
00000 Strain Rote .... O.'!sec
...... Strain Rete '" a.o'/!!eC
...... Strain Rate = a.OO1/sec

3.5

3.0

o
c,
0; 2.5

1
::l 2.0
~
Vi
a 1.5
o....

1.0

0.5

== ~~~~:~ ~~~: :: ~ %=~c
.......... Stroin Rota .... 0,' Isec
.... ". Strain Rote _ O,01/see
......... Strain Rote '"" 0.001/sl!lc

0.2 0.3 0.4

Axial Strain £~ (~)

0.5 0.6

1.5

~

~ 1.0
~
c,

0.0
0.0 0.1 0.2 0.3 0.4

Axial Strain <y, (.)

0.5 0.6

Fig.2 Variation of the predicted total stress at five
different strain rates using the poroelastic
properties from the bovine vertebral
trabecular bone

3. Results

The two-dimensional axisymmetric poroelastic
problem was solved using a finite difference
method to investigate the effect of coupled
mechanical interactions between the fluid and
solid phases of the bovine vertebral trabecular
bone. Numerical solutions were obtained to inves
tigate the effect of various strain rates (or loading
speeds) of 0.001,0.01,0.1, 1, and 10 per second.
The poroelastic properties of the bovine vertebral
trabecular bone from the previous section used
for model parameters to obtain the numerical
solutions.

Figure 2 shows the total stress-strain curves
predicted from the poroelastic model at 5 different
strain rates in the uniaxial stress condition. For
each strain rate, the total stress and pore pressure
from the each finite difference grid of the model
were summed and then averaged at each time step
to simulate the load measured at load cell in the
material testing machine. At the highest strain
rate (10 per second), the predicted total stress
strain curve was nearly linear, implying that an
undrained deformation occurred. A nearly linear
total stress-strain curve was also predicted at the
slowest strain rate, 0.001 per second, since the
pore fluid flow was so slow and steady that
negligible pore pressure was produced.

Fig. 3 Variation of the predicted pore pressure at
fivedifferent strain rates using the poroelastic
properties from the bovine vertebral
trabecular bone

From the strain rate of 0.01 per second, the
predicted total stress-strain curve became non
linear, and more nonlinear at the strain rates of
0.1 and 1 per second. These changes in total
stress-strain curves resulted from the changes in
the pore pressure at various strain rates, as shown
in Fig. 3 illustrating the changes in predicted pore
pressure at various strain rates. For example, the
pore pressure generation is almost negligible, and
pore pressure has no effect on the total stress at
the slowest strain rate (0.001 per second). How
ever, pore pressure was substantially generated
even at the slowest loading rate. At the strain
rates of 0.01,0.1, and 1 per second, the behavior
of predicted pore pressure represent apparently
nonlinear behavior. As a result, the nonlinear
behavior of total stress was predicted.

4. Discussion

The strain rate effect on the mechanical prop
erties of trabecular bone is frequently observed in
the previous studies. The uniaxial stress condition
is commonly used for measuring the mechanical
properties of trabecular bone. Strain rate input
has been most widely used for this purpose. While
trabecular bone specimens with marrow in situ
exhibits the influence of strain rate on mechanical
properties under the uniaxial stress condition
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(Han et aI., 1996; Linde et al., 1991), no quantita
tive assessment has been made to understand the
mechanism of changing mechanical properties at
various strain rate inputs. Particularly, the effect
of intraosseous fluid pressure on the mechanical
properties of trabecular bone in an uniaxial con
dition has never been investigated although it is
generally believed that the enhancement of
mechanical properties may be caused by the
intraosseous fluid (Carter and Hayes, 1977; Du
cheyne et aI., 1977). The two-dimensional
axisymmetric poroelastic model was developed in
this study to investigate the effect of pore fluid
and strain rate on the mechanical behavior of
bovine vertebral trabecular bone in the elastic
range. This investigation is the first analytical
study using the measured poroelastic properties of
trabecular bone to analyze its poroelastic behav
IOr.

As noted in the poroelastic constitutive Eq.
(I), a total stress resulting from a strain input can
vary due to the pore pressure generation that can
be estimated by solving the diffusion Eq. (2). The
amount of pore pressure generated within the
representative element of volume is affected by
several factors, such as the poroelastic properties,
the volumetric deformation rate, and boundary
conditions. For example, a maximum pore pres
sure would be generated regardless of the other
factors when the pore fluid is trapped in the
porous solid because of the confined boundary
condition. This called an undrained deformation.
Such an asymptotic deformation also would be
possible at least for a short time period even in a
free fluid flow boundary condition during a very
fast deformation since the pore fluid has no time
to move within the representative element of
volume. On the other hand, pore pressure genera
tion is negligible in a drained condition. When a
poroelastic material in an unconfined boundary
condition undergoes static (or quasi-static) load
ing, there is a sufficient time for the pore pressure
to equilibrate to the boundary pressure. Assuming
zero boundary pressure, a negligible pore pres
sure is generated within the entire representative
element of volume during deformation.

These two asymptotic poroelastic responses

were well predicted from the poroelastic model of
bovine vertebral trabecular bone (Fig. 2 and 3).
The pore pressure generation was greatest and
increased linearly at the fastest strain rate (IO per
second), while the pore pressure generation was
smallest and maintained minimum value during
the deformation at the slowest strain rate (0.001
per second). The difference in pore pressure
generation resulted in a significant increase in the
predicted total stress at the fastest strain rate.

In intermediate conditions between the un
drained and drained conditions, the permeability
coefficient was shown to mainly affect the pore
pressure generation in poroelastic materials
(Hong and Lim, 1998). Since the permeability
coefficient represents a resistance of interstitial
fluid flow, its magnitude governs the pore pres
sure diffusion incorporated with other four-por
oelastic properties. When poroelastic materials
undergo an intermediate loading between the very
fast and quasi-static in the uniaxial stress condi
tion, the volumetric deformation rate is not suffi
ciently fast or slow to form an undrained or
drained condition. Dissipation and generation of
pore pressure occur while interstitial fluid flows
within a poroelastic material and across its
boundary. A difference between the generated and
dissipated pore pressures determines a total stress
variation and thus an apparent stiffening behav
ior of poroelastic materials. Incorporating the
poroelastic properties into the pore pressure diffu
sion phenomena, the pore pressure was predicted
to change nonlinearly (Fig. 3), and the total
stress showed a nonlinear increase (Fig. 2) in the
intermediate strain rates (0.01, 0.1, and I per
second) .

The compressibility of the fluid and solid
phases may significantly affect the pore pressure
generation and thus the deformation of poroelas
tic materials. The compressibility of a material is
defined as an inverse of bulk modulus. The bulk
modulus (or modulus of compression) is the ratio
of the compressive stress to the cubical compres
sion, i. e., the hydrostatic pressure state. The bulk
modulus can be defined by an elastic relationship:
K=E/{3(l-2v)} where K is the bulk modulus;
E is the elastic modulus; and v is the Poisson's
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Fig. .4 Deformation of an idealized microstructure of poroelastic material

ratio. When the Poisson's ratio varies from - I to
0.5 in an isotropic elastic range, the bulk modulus
changes £/9 to co. Thus, a hydraulic pressure
tends to diminish the bulk volume for all physical
materials. An isotropic material is incompressible
only when the Poisson's ratio is 0.5. Since the
pore pressure in a poroelastic material is hydros
tatic, the solid matrix should experience the
hydraulic pressure during deformations. The
effect of compressibility of solid and fluid constit
uents of poroelastic material is considered as a

major factor to alter its poroelastic behavior at
the continuum level (Detournay and Cheng,
1993; Green and Wang, 1986). For example, Fig.
4 illustrates the deformation of solid matrix in an
undrained condition schematically when a porous
material saturated with fluid undergoes a
volumetric deformation. The effect of compres
sibility on the deformation of a poroelastic mate
rial can be decomposed into two states. An appli
cation of external force on the poroelastic mate
rial composed of compressible constituents causes
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a bulk deformation of solid skeleton (state I).

The bulk deformation generates a pore pressure

in pores of the material. The resulting pore pres
sure induces a dilation of pores (state 2). The

bulk deformation and dilation of pores of the
poroelastic material result in the combined defor

mation (state 1-j-state 2). The compressibility of
solid and fluid phases affects the bulk deforma

tion of solid skeleton and dilation of pores. This
interaction between the fluid and solid phases

affects the deformation of a poroelastic material
until the deformation terminates. For example,

there is negligible pore pressure and thus no
dilation of pore space for a poroelastic material
filled with highly compressible fluid constituent.

Thus, the material behaves like a porous elastic
material without fluid. For the incompressible

constituents model, the bulk deformation of solid
skeleton represents the reduction of pore space
without any dilation of pores.

The poroelastic model developed in this study
has some limitations. First of all, the model was

developed based on the assumption of uniform
pore distribution in the representative element of
volume. An irregular pore distribution would
result in changes in the elastic properties as well
as localized permeability changes. This would be

able to be incorporated by using different por

oelastic properties in each element in the model.
Secondly, the isotropic properties trabecular bone

was assumed for the model development. In case
of anisotropy, the estimation of the drained shear
modulus values from the relationship among the
elastic modulus, drained shear modulus, and

drained Poisson's ratio would not be valid.
Furthermore, the permeability coefficient value
used in this study was along the cephalad-caudal

direction, while the fluid flow in the model would
occur in the lateral as well as axial directions.

Thus, the anisotropic property of trabecular bone
would result in different model behavior. More

sophisticated study is recommended considering
the anisotropic poroelastic properties of

trabecular bone in the future.
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Appendix

A.I Theory of Poroe1asticity
Stress exerted on a control volume element of a

fluid-filled porous material (total stress) pro
duces both strains and changes in pore pressure in
the control element. Rice and Cleary (1976)
reformulated the relationship among the total
stress, strain, and pore pressure using unique
material parameters (Table A). Assuming the

Table A. Porous elastic parameters based on Rice and Clearly's formulation

Parameters

G Shear Modulus
v Poisson's Ratio
Vu Undrained Poisson's Ratio
B Skempton's Pore Pressure Build-up Coefficient
K Permeability Coefficient
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isotropy of the porous elastic material, the con
stitutive equations were defined as:

3 a2
where t = time; V'2= t1 axt (the Laplacian opera-

tor); and Ckk = the trace of strain tensor or
volumetric strain.

When a porous elastic material deforms with
out generating a pore pressure (p=O.O), Eq.
(AI) becomes the constitutive equation for an
isotropic elastic solid material:

(A4)

across the boundary. During the undrained defor
mation, a porous elastic material can be treated as
an elastic material with the same shear modulus
(G) but different Poisson's ratio, i. e., the un
drained Poisson's ratio (vu). The corresponding
constitutive equations can be expressed as
(Detournay and Cheng, 1993):

(Jij=2Gcij+ 12!:!{.:;u CkkO;;

The theoretical range of vu is vsvusO.5.
Skempton's pore pressure build-up coefficient

(B) was defined as the ratio of the pore pressure
increment (Llp) to the mean stress increment
(L1(Jkk/3) during an undrained deformation
(Green and Wang, 1986) B= -3L1p/L!(Jkk' Thus,
B indicates the load bearing capability of the
fluid constituent that is caused by the restricted
fluid flow across the boundary. In general, B
varies from 0.0 to 1.0 (Rice and Clearly, 1976).

The relationship between Band v» is aB= [3
(vu-v) J/[ (l-2v) (1+vu) J, where Q' is the Biot
coefficient of effective stress and l/ is the Poisson'
s ratio. B and v u are known to be related with the
compressibility of both solid and fluid constitu
ents. Their values represent the porous elastic
effects such as the sensitivity of the volumetric
response to the rate of loading and the rate of
pore pressure generatio~. For example, Band v;
values are 1.0 and 0.5, respectively, for a porous
elastic material consisting of the incompressible
solid and fluid constituents in which the porous
elastic effects are strongest. When the fluid con
stituent becomes more compressible, some of the
porous elastic effects disappear, and B and v u

become closer to 0.0 and v, respectively.
The permeability coefficient (K) is a well

known parameter which describes how the inter
stitial fluid can flow through the pores in a
porous elastic material. k is known to be sensitive
to the viscosity of the fluid as well as to the
geometrical factors, such as pore size and tor
tuosity (Scheidegger, 1957).

(A3)

(A2)

2KGB2(l-2v) (I+vU) \ 72

9(vu-v) (I-2vu) P

2GB(1+vu ) aCkk
3(1-2vu) at

3p(vu-v) ~ -2G
(Jij+ B(1-2v) (I +vu ) Uij- Cij

2Gv
+ 1_2vCkkOij (AI)

where (Jij=total stress tensor (MPa); cij=strain
tensor; p= pore pressure (MPa); Oij=Kronecker
delta (if i=j, then oij=l, if i=l=j then Oij=O);
and i, j=l, 2, 3 (the summation convention
applies when repeated indices are used).

The diffusion equation that governs pore pres
sure generation with volumetric deformation of
the control element is Detournay and Cheng,
(1993):

l1!..at

2Gv
(Jij=2Gcij+ 1-2v CkkO;;

where G=shear modulus and v=Poisson's ratio.
Such a deformation with zero pore pressure gener
ation can occur when a quasi-static load is
applied to porous elastic material in a drained
condition in which the interstitial fluid can flow
across the boundary with no resistance. Thus, this
was called a drained deformation, and G and v
were named as the shear modulus and the Pois
son's ratio, respectively.

The other asymptotic behavior of a porous
elastic material is called an undrained deforma
tion since it occurs in an undrained condition in
which the interstitial fluid is totally prevented
from flowing out of the control volume element




